an NCS^{-}anion in (1) or (2), that is, the $\mathrm{BF}_{4}{ }^{-}$anion forms a hydrogen bond with thiazolium $\mathrm{C}(2) \mathrm{H}$ and it further contacts electrostatically with the pyrimidine ring.* Analogously to the above-mentioned NCS ${ }^{-}$ anion bridge in (1) and (2), there is a water bridge between the pyrimidine and the thiazolium rings in (2) and (3), that is, a water molecule, $\mathrm{O}(W B)$ in (2) or $\mathrm{O}(W)$ in (3), forms a hydrogen bond with $\mathrm{N}\left(4^{\prime} \alpha\right) \mathrm{H}$ and also takes part in an electrostatic interaction with the thiazolium ring [B molecule for (2); not shown in Fig. l(b)].* This type of water bridge has often been observed in other hydrated thiamine structures with the F conformation, e.g. thiamine.$\mathrm{Cl}_{2} \mathrm{H}_{2} \mathrm{O}$ (Pletcher, Sax, Sengupta, Chu \& Yoo, 1972), thiamine.picrolonate. $2 \mathrm{H}_{2} \mathrm{O}$ (Shin, Pletcher, Blank \& Sax, 1977), thiaminepyrophosphate. $4 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (Pletcher, Blank, Wood \& Sax, 1979), thiamine. $\mathrm{PF}_{6} . \mathrm{H}_{2} \mathrm{O}$ (Aoki, Yamazaki, Waragai \& Itokawa, 1988), thiaminium. $\left(\mathrm{PF}_{6}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Aoki et al., 1988) and thiamine monophosphate. $\mathrm{PF}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Aoki et al., 1988). This suggests that the water bridge stabilizes the F conformation of thiamine.

A base-base pairing through a pair of $\mathrm{N}\left(4^{\prime} \alpha\right)$ $\mathrm{H} \cdots \mathrm{N}\left(3^{\prime}\right)$ hydrogen bonds forms across a centre of symmetry in (1) (not shown in Fig. 1a) and between molecules A and B in (2), while it does not in (3). An $\mathrm{O}(5 \gamma)-\mathrm{H} \cdots \mathrm{N}\left(1^{\prime}\right)$ hydrogen bond, which is commonly formed in (1)-(3), creates a thiamine-thiamine self-dimer in (1) and (2), each across a centre of symmetry [i.e. between A and A and between B and B molecules in (2)] while it creates a polymeric molecular array of thiamines in (3).

[^0]In summary, this work presents additional examples showing the thiamine-anion complexation, where an anion molecule forms a hydrogen bond with the acidic $\mathrm{C}(2) \mathrm{H}$ and it further interacts electrostatically with the pyrimidine ring of the same thiamine molecule with the F conformation, thus serving as a model for the substrate anion fixation near the catalytic $C(2)$ site in the enzyme system.

References

Aoki, K. \& Yamazaki, H. (1985). J. Am. Chem. Soc. 107, 6242-6249.
Aoki, K., Yamazaki, H., Waragal, K. \& Itokawa, H. (1988). Acta Cryst. C44, 1949-1955.
Archibong, E., Adeyemo, A., Aoki, K. \& Yamazaki, H. (1989). Inorg. Chim. Acta, 156, 77-83.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Breslow, R. (1958). J. Am. Chem. Soc. 80, 3719-3726.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Krampitz, L. O. (1969). Annu. Rev. Biochem. 38, 213-240.
Main, P., Hull, S. E., Lessinger, L., German, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Pletcher, J., Blank, G., Wood, M. \& Sax, M. (1979). Acta Cryst. B35, 1633-1637.
Pletcher, J., Sax, M., Blank, G. \& Wood, M. (1977). J. Am. Chem. Soc. 99, 1396-1403.
Pletcher, J., Sax, M., Sengupta, S., Chu, J. \& Yoo, C. S. (1972). Acta Cryst. B28, 2928-2935.

Sakurai, T. \& Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69-77.
Shin, W., Pletcher, J., Blank, G. \& Sax, M. (1977). J. Am. Chem. Soc. 99, 3491-3499.

Acta Cryst. (1990). C46, 1487-1490

Structure of 3,5-Bis(dimethylamino)-6-phenyl-1,2,4-triazine 1-Imide

By Peter F. Lindley
Department of Crystallography, Birkbeck College, Malet St, London WC1E 7HX, England
and Gerhard V. Boyd and George A. Nicolaou
Department of Chemistry, King's College, Strand, London WC2R 2LS, England

(Received 11 October 1989; accepted 22 November 1989)

Abstract

C}_{13} \mathrm{H}_{18} \mathrm{~N}_{6}, \quad M_{r}=258.32\), orthorhombic, $P 2_{1} 2_{2} 2, \quad a=15.095$ (3), $\quad b=16.333$ (3),$\quad c=$ $5 \cdot 643$ (1) $\AA, \quad V=1391 \cdot 3$ (5) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $1.233 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{CuK} \mathrm{\alpha})=1.54178 \AA, \quad \quad \mu=$ $0.56 \mathrm{~mm}^{-1}, F(000)=552, T=293(1) \mathrm{K}$, final $R=$ $0.042, w R=0.046$ for 2500 independent reflections.

0108-2701/90/081487-04\$03.00

The $1,2,4$ triazide ring is not strictly planar, the phenyl ring makes an angle of $-63.5(1)^{\circ}$ with the plane through N1, N2, C5, N11. The bond distances in the triazinium imide, particularly the N1-N11 (imide) at $1 \cdot 296$ (2) \AA, indicate that canonical forms involving an exocyclic $\mathrm{N}-\mathrm{N}$ double bond at N 1 © 1990 International Union of Crystallography
make important contributions to the overall resonance hybrid. The crystal structure contains intermolecular H bonds involving the imide H atom.

Introduction. We report here the first representatives of the $1,2,4$-triazine 1 -imide system. These compounds (VII) were obtained by reaction of the azabutenylium salts (I) (Boyd, Lindley \& Nicolaou, 1984) with sodium azide and treatment of the resulting azido perchlorates (II) with sodium hydroxide. Contrary to our earlier suggestion (Boyd, Lindley, Mitchell \& Nicolaou, 1985), we now consider that the products are formed by 1,7-dipolar cyclization of the azides (III) to tetrazepines (IV), which rearrange via the tautomers (V) and the bicyclic compounds (VI), as shown in the reaction scheme. The appearance of a blue colour may be due to the tetrazepines (IV) or (V) and there are precedents for the last two steps in the sequence in the chemistry of pyridine N-imides, (Timpe, 1974) and benzocinnoline N-imide (Gait, Rees \& Storr, 1971). The triazinium imides are stable pale-yellow solids; they are noteworthy because, like benzocinnoline N-imide, they lack an electron-withdrawing substituent on the exocyclic \mathbf{N} atom, a feature common to all stable heterocyclic N-imides (Timpe, 1974).

Experimental. A solution of sodium azide $(2.2 \mathrm{~g}$, $1 \cdot 1 \mathrm{~mol}$ equiv.) in water (4 ml) was added dropwise to a magnetically stirred solution of 1-chloro-1,3-bis(dimethylamino)-4-phenylbut-2-ene-1-ylium perchlorate (I) $(10.0 \mathrm{~g})$ in acetonitrile (40 ml). The mixture was stirred for 1 h , filtered and evaporated in vacuo. The residue was recrystallized from acetonitrile/ethyl acetate, yielding 1 -azido-1,3-bis(dimethylamino)-4-phenylbut-2-en-1-ylium perchlorate ($\mathrm{II} a$) $(9 \cdot 12 \mathrm{~g}, 90 \%)$, m.p. 394 K (decomp.),
$\nu_{\text {max }} 2140\left(\mathrm{~N}_{3}\right), 1640(\mathrm{C}=\mathrm{N})$ and 1100 (br) $\left(\mathrm{ClO}_{4}\right) \mathrm{cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 7 \cdot 44-7 \cdot 26$ (br $\left.s, 5 \mathrm{H}, \mathrm{Ph}\right), 4 \cdot 1$ ($s, 2 \mathrm{H}, \mathrm{CH}$), 3.47 ($s, 3 \mathrm{H}, \mathrm{Me}$), $3 \cdot 39$ ($s, 3 \mathrm{H}, \mathrm{Me}$), 3.01 ($s, 3 \mathrm{H}, \mathrm{Me}$) and $2.96(s, 3 \mathrm{H}, \mathrm{Me})$. Found: $\mathrm{C} 43 \cdot 4, \mathrm{H}$ $5 \cdot 25$, N $23 \cdot 6 \% ; \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{ClN}_{6} \mathrm{O}_{4}$ requires C $43 \cdot 5, \mathrm{H}$ $5 \cdot 35, \mathrm{~N} 23 \cdot 4 \%$. A stirred solution of this azido perchlorate $(5.0 \mathrm{~g})$ in acetonitrile (20 ml) was slowly treated with $2 M$ aqueous sodium hydroxide (14 ml , 2.0 mol equiv.). A deep-blue colour was produced which quickly faded. The mixture was stirred for 30 min , water (20 ml) was added and the mixture was extracted with ethyl acetate $(3 \times 15 \mathrm{ml})$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo leaving pale-yellow 3,5-bis(dimethyl-amino)-6-phenyl-1,2,4-triazine 1 -imide (VIIa) ($2 \cdot 8 \mathrm{~g}$, 78%), m.p. 383 K (decomp.) from ethanol, $\nu_{\max } 3240$ (NH) and $1600 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 8 \cdot 1(b r s, 1 \mathrm{H}, \mathrm{NH})$, $7 \cdot 46(b r s, 5 \mathrm{H}, \mathrm{Ph}), 3 \cdot 1\left(s, 6 \mathrm{H}, \mathrm{NMe}_{2}\right)$ and $2 \cdot 7(s, 6 \mathrm{H}$, NMe_{2}). Found: C $60 \cdot 6, \mathrm{H} 7 \cdot 1, \mathrm{~N} 33 \cdot 0 \% ; \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{6}$ requires C $60 \cdot 45, \mathrm{H} 7 \cdot 05, \mathrm{~N} 32 \cdot 5 \%$. The other compounds, (VII $b-d$) having similar spectral characteristics, were prepared in an analogous manner.*

Intensity data were collected from a prismatic crystal, $0.25 \times 0.50 \times 0.75 \mathrm{~mm}$, with a Hilger and Watts Y290 four-circle diffractometer (Ni-filtered $\mathrm{Cu} K \alpha$ radiation). Unit-cell parameters and their e.s.d.'s were derived from 20 reflections with $25 \cdot 3<\theta$ $<29.7^{\circ}$. Intensity measurements were made for 4445 reflections ($h \pm 18, k \pm 19,-4<l<6 ; 2 \theta_{\max }=140^{\circ}$) in the $\omega / 2 \theta$ scan mode with $\Delta \omega=(0.75+0.142 \tan \theta)^{\circ}$ and 0.01° steps at 1 s per step; stationary background counts were taken for one-tenth of the total scan time either side of each peak. Four reference reflections (442, $\overline{4} \overline{42}, 4 \overline{2} 2, \overline{4} 2 \overline{2}$; typical r.m.s.d. $=$ 2.0%) were measured every 50 measurements; no significant crystal decay was observed. The intensity data were corrected for Lp and absorption, (North, Phillips \& Mathews, 1968), using the $00 l(l=1-3)$ reflections; maximum and minimum normalized transmission factors 1.06 and 1.00 , respectively. Reflections were merged ($R_{\text {int }}=0.025$) to yield 2500 reflections with $I>3 \sigma(I)$.

The structure was solved with MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980) and refined using F 's with SHELX76 (Sheldrick, 1976). Initially all non-H atoms were treated isotropically to give $R=0.118$; the phenyl H atoms, imide H atom, and some of the methyl H atoms were located from a difference Fourier synthesis as diffuse electron-density maxima,

[^1]Table 1. Fractional atomic coordinates and equivalent isotropic temperature factors

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
N1	0.3859 (1)	0.0752 (1)	0.3754 (3)	0.045 (1)
N11	0.3816 (1)	-0.0021 (1)	0.4260 (4)	0.060 (1)
N2	0.4484 (1)	0.0988 (1)	0.2148 (3)	0.050 (1)
C3	0.4444 (1)	0.1772 (1)	0.1496 (4)	0.048 (1)
N31	0.4982 (1)	0.1979 (1)	-0.0333 (3)	0.067 (1)
C32	0.5034 (2)	0.2805 (2)	-0.1194 (5)	0.079 (1)
C33	0.5503 (2)	0.1371 (2)	-0.1562 (5)	0.074 (1)
N4	0.3945 (1)	0.2363 (1)	0.2457 (1)	0.053 (1)
C5	0.3382 (1)	0.2128 (1)	0.4160 (4)	0.030 (1)
N51	0.2902 (1)	0.2740 (1)	0.5143 (3)	0.058 (1)
C52	0.2501 (2)	0.2710 (2)	0.7480 (5)	0.074 (1)
C53	0.2978 (2)	0.3565 (1)	0.4180 (5)	0.078 (1)
C6	0.3279 (1)	$0 \cdot 1298$ (1)	0.4795 (4)	0.044 (1)
C61	0.2580 (1)	0.0938 (1)	0.6295 (4)	0.046 (1)
C62	0.2776 (1)	0.0532 (1)	0.8406 (4)	0.051 (1)
C63	0.2113 (2)	0.0228 (1)	0.9821 (4)	0.063 (1)
C64	0.1243 (2)	0.0302 (2)	0.9163 (5)	0.075 (1)
C65	0.1031 (1)	0.0683 (2)	0.7061 (5)	0.074 (1)
C66	0.1694 (1)	$0 \cdot 1004$ (1)	0.5622 (4)	0.060 (1)

Table 2. Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ for the non-H atoms; e.s.d.'s include cell-parameter errors

N1-N11	$1.296(2)$	C5-C6	$1.411(2)$
N1-N2	$1.364(3)$	N51-C52	$1.452(3)$
N1-C6	$1.381(3)$	N51-C53	$1.457(3)$
N2-C3	$1.334(2)$	C6-C61	$1.475(3)$
C3-N31	$1.356(3)$	C61-C62	$1.395(3)$
C3-N4	$1.339(3)$	C61-C66	$1.394(2)$
N31-C32	$1.436(4)$	C62-C63	$1.373(3)$
N31-C33	$1.444(4)$	C63-C64	$1.370(4)$
N4-C5	$1.339(2)$	C64-C65	$1.377(4)$
C5-N51	$1.353(3)$	C65-C66	$1.391(3)$
N11-N1-N2	$117.2(2)$	C5-N51-C52	$124.8(2)$
N11-N1-C6	$120.2(2)$	C5-N51-C53	$119.2(2)$
N2-N1-C6	$122.6(2)$	C52-N51-C53	$113.7(2)$
N1-N2-C3	$115.0(2)$	N1-C6-C5	$116.3(2)$
N2-C3-N31	$115.0(2)$	N1-C6-C61	$116.1(2)$
N2-C3-N4	$127.3(2)$	C5-C6-C61	$127.4(2)$
N31-C3-N4	$117.7(2)$	C6-C61-C62	$121.9(2)$
C3-N31-C32	$121.6(2)$	C6-C61-C66	$119.9(2)$
C3-N31-C33	$121.3(2)$	C62-C61-C66	$118.2(2)$
C32-N31-C33	$117.0(2)$	C61-C62-C63	$120.9(2)$
C3-N4-C5	$116.2(2)$	C62-C63-C64	$120.6(2)$
N4-C5-N51	$115.0(2)$	C63-C64-C65	$119.7(2)$
N4-C5-C6	$121.8(2)$	C64-C65-C66	$120.4(2)$
N51-C5-C6	$123.1(2)$	C61-C66-C65	$120.1(2)$

$0.4-0.6 \mathrm{e} \AA^{-3}$. In the subsequent refinement the H atoms bonded to C atoms were placed in fixed positions assuming idealized geometry and $\mathrm{C}-\mathrm{H}$ distances of $1 \cdot 0 \AA$, but the H atom at N11 was fixed at the appropriate electron-density maximum; all the non-H atoms were permitted to refine anisotropically. The quantity minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ and convergence was reached at $R=0.042[w R=$ $0.045,245$ parameters, $w^{-1}=\sigma^{2}(F)+0 \cdot 000002|F|^{2}$, $(\Delta / \sigma)_{\max }=0.68$]. The final difference Fourier synthesis showed no residual densities outside the range -0.26 to $0.32 \mathrm{e} \AA^{-3}$. The crystal appeared to exhibit some extinction for which the F_{c} values were
corrected by refinement of an impirical isotropic extinction parameter, $X\left[=0.35(3) \times 10^{-5}\right] ; \quad F_{c}{ }^{\prime}=$ $F_{c}\left[1-\left(X F_{c}^{2} / \sin \theta\right)\right]$. Scattering factors were taken from Cromer \& Mann (1968). Molecular geometry calculations were performed using programs written by Lindley (unpublished).

Discussion. Refined atomic coordinates and equivalent isotropic thermal parameters of the non-H atoms are given in Table 1,* and bond lengths and bond angles for the non- H atoms are listed in Table 2. Fig. 1 is a stereo drawing of the molecule viewed parallel to the c axis; the atomic numbering scheme is implicit in the compound name.

The 1,2,4-triazide ring is not strictly planar and the dihedral angle between the planes through atoms N1, $\mathrm{N} 2, \mathrm{C} 6$ and N 11 , and C3, N4 and C5 is $4.65(6)^{\circ}$. The phenyl ring at C 6 is inclined at a dihedral angle of $-63.5(1)^{\circ}$ to the plane through $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{C} 5$ and N11. The structure determination shows that the molecule is not satisfactorily represented by formula VII(i), in which the positively charged aromatic triazinium ring is linked to the exocyclic negatively charged N atom by a single bond, as in pyridine 1-nitroimide, which possesses a long $\mathrm{N}-\mathrm{N}$ bond, $1.421 \AA$, emanating from the pyridine ring, and whose $\mathrm{C}-\mathrm{N}$ bonds (1.340 and $1.350 \AA$) and $\mathrm{C}-\mathrm{C}$

* See deposition footnote

Fig. 1. A stereo drawing (Motherwell, 1978) of the molecule of 2,5-bis(dimethylamino)-6-phenyl-1,2,4-triazine 1-imide, $\mathrm{C}_{13} \mathrm{~N}_{18}{ }^{-}$ N_{6}; the atomic labelling is implicit in the compound name.

Fig. 2. The crystal packing viewed along the unit-cell c axis. Intermolecular H bonds are formed between N11 of one molecule and N 2 of a second related by the twofold symmetry operation ($1-x,-y, z$); the $\mathrm{N} \cdots \mathrm{N}$ distance is $3 \cdot 240(2) \AA$. $(\mathrm{H}$ bonds are omitted for clarity.)
bonds (1.366 to $1.387 \AA$) are intermediate between single and double bonds (Arriau, Deschamps, Duke, Epsztajn, Katritzky, Lunt, Mitchell, Rizvi \& Roch, 1974). The bond distances in the triazinium imide indicate that, on the contrary, the canonical forms (i)-(iv) of (VII a) make important contributions to the resonance hybrid, due, presumably, to the presence of the electronegative N atoms at positions 2 and 4.

The molecular packing is shown in Fig. 2 viewed along the unit-cell c axis, Intermolecular H bonds are formed between the 1 -imide N atom, N 11 , and N 2 of a molecule related by the twofold symmetry operation $(1-x,-y, z)$; the $\mathrm{N} \cdots \mathrm{N}$ separation is $3 \cdot 240$ (2) \AA. This type of intermolecular interaction presumably assists in stabilizing the 1 -imide structure in the crystal. There are no other non-bonded contacts which are significantly closer than the sum of the corresponding van der Waals radii.

References

Arriau, J., Deschamps, J., Duke, J. R. C., Epsztann, J., Katritzky, A. R., Lunt, E., Mitchell, J. W., Rizvi, S. Q. A. \& Roch, G. (1974). Tetrahedron Lett. pp. 3865-3868.
Boyd, G. V., Lindley, P. F., Mitchell, J. C. \& Nicolaou, G. A. (1985). J. Chem. Soc. Chem. Comm. pp. 1522-1523.

Boyd, G. V., Lindley, P. F. \& Nicolaou, G. A. (1984). J. Chem. Soc. Chem. Commun. pp. 1105-1107.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Gait, S. F., Rees, C. W. \& Storr, R. C. (1971). J. Chem. Soc. Chem. Commun. pp. 1545-1546.
Mann, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Motherwell, W. D. S. (1978). PLUTO. A program for plotting molecular and crystal structures. Univ. of Cambridge, England.
North, A. C. T., Philips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Timpe, H. J. (1974). Adv. Heterocycl. Chem. 17, 213-253.

Structure of Stearic Acid \boldsymbol{E} Form

By Fumtoshi Kaneko and Masamichi Kobayashi
Department of Macromolecular Science, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan

and Yasuyuki Kitagawa and Yoshiki Matsuura
Institute for Protein Research, Osaka University, Suita, Osaka 565, Japan

(Received 7 September 1989; accepted 13 November 1989)

Abstract

E\) form of octadecanoic acid, $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}$, $M_{r}=284 \cdot 48$, monoclinic, $P 2_{1} / a, \quad a=5 \cdot 603$ (1), $b=7.360(1), c=50.789$ (9) $\AA, \beta=119.40(2)^{\circ}, V=$ 1824.6 (7) $\AA^{3}, Z=4, D_{x}=1.04 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} K \alpha)=$ $1.5418 \AA, \mu=5.0 \mathrm{~cm}^{-1}, \quad F(000)=640, T=283 \mathrm{~K}$, $R(F)=0.052, \quad w R(F)=0.082$ for 2225 unique observed reflections with $F>3 \sigma(F)$. The polymethylene chain of the acyl group takes an all-trans conformation and forms an $O \perp$ type subcell with a_{s} $=7.36, b_{s}=5.02$, and $c_{s}=2.55 \AA$. The a_{s} axis is parallel to the unique axis (b axis) and the c_{s} axis is tilted by about 26° from the normal of the basal plane toward the a axis.

Introduction. It is well known that even-numbered n-fatty acids crystallize into various modifications depending on the crystallization conditions. Holland \& Nielson (1962) obtained single crystals of stearic acid (octadecanoic acid) from a diethyl ether solution. The crystal had a lozenge shape with an acute
interedge angle of about 74° like the B form but showed an infrared spectrum different from those of any of the previously known modifications (A, B and C forms). They concluded that the crystal was of a new modification, and named it the E form. Based on the investigation of the infrared spectra and on the morphological observation, they derived the crystal structure of the E form as follows (Holland \& Nielson, 1963):
(1) Molecules formed an o-PE type $(O \perp)$ sublattice in the unit cell that belongs to a monoclinic system as in the B and C forms.
(2) The polymethylene chain took the all-trans conformation as in the C form and was inclined toward the basal plane in the same manner (the direction and the angle of inclination) as in the B form.
Except for the work carried out by Kobayashi, Kobayashi, Cho \& Kaneko (1986) who came to the same conclusions through Raman spectroscopy,
© 1990 International Union of Crystallography

[^0]: *See deposition footnote.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters, least-squares planes for (VIIa) and analytical details for (VII $b-d$) have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52800 (15 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

